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ABSTRACT

High-end geophysical workflow has been successfully deployed in Shallow Water Offshore Nigeria for effective
subsurface risk assessment. In this paper, we demonstrate this workflow for two business critical evaluations: 1) the
identification and maturation of High-Pressure gas exploration opportunities and 2) evaluation of sand connectivity for a
gas-bearing reservoir, called the H2, to support proper placement of appraisal/development wells. Ocean Bottom Nodes
(OBN) seismic datasets were uploaded and enhanced by using high-end geophysical workflow to highlight subtle
structural and stratigraphic features and visualized on interpreted events using the stratigraphic attributes. The results
show that consistent late-stage lower Net-to-Gross (NTG) sand fairways exist between Well-002 and Well-001. The
results were integrated with quantitative interpretation work to further optimize the location of the planned
appraisal/development wells and unlock significant gas resources in the block. The workflow was also used to enhance
the imaging of a deep high-pressure (HP) footwall exploration prospect within the lower shelf depositional environment
in Shallow Water Offshore Nigeria. The results show that the crestal part of a reservoir-seal-pair (RSP) is sand-prone and
that another is highly channelized and has relatively lower NTG. These results were used to optimize the reservoir chance
factors of the RSPs. These high-end methods are used to enhance seismic imaging and enable seismic interpreters to
iteratively interrogate seismic data on-the-fly. The products are used to produce credible subsurface models that underpin

quality decisions key to successful exploration and field development in Nigeria.
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INTRODUCTION

Critical business decisions are founded on credible
technical evaluations. The objective of this paper is to
demonstrate how robust geological models and high-end
geophysical tools were deployed to assess the subsurface
risks in two valuable projects in the Shallow Water
Offshore, Nigeria (Figure 1). The assessments
highlighted the subsurface risks in the projects and
informed the business decisions made for the projects.

The first example is a near field exploration (NFE) project
to identify and mature deep high pressure (HP) gas
opportunities in support of Nigeria Liquefied Natural Gas
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(NLNG) Train 7 (T7) aspirations. The prospect is
attractive being situated beneath an existing discovery.
The plan is to test the prospect by deepening one of the
planned development or appraisal wells for the
discoveries, thus, reducing capital expenditure (CAPEX).
Ocean Bottom Node (OBN) seismic data acquired in the
area has indicated a faulted dip footwall closure beneath
the field. However, the well section shows that the
thickness and interval Net to Gross (NTG) of the Lower
Messinian stratigraphic sequence significantly depreciates
laterally and vertically in the area (Figure 1). Thus,
reservoir presence and quality are the key risks for the deep
exploration objectives and relevant high-end geological
and geophysical workflows were used to de-risk the
prospect.

The second example is the evaluation of H2 gas-bearing
reservoir that straddles two adjacent fields. H2 reservoir is
within the Lower Shelf Gross Depositional Environment
of the Upper Messinian. It is made up of mostly channels,
heteroliths and shoreface sands. Pressure data from two
adjacent wells (~3km apart) penetrating H2 reservoir
suggests ~120psi depletion observed in both gas and water
legs of the reservoir. Thus, it was necessary to properly
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assess H2 sand distribution and connectivity for the
placement of appraisal/development wells.

DATASET & METHODOLOGY

Ocean Bottom Node (OBN) seismic data acquired in
2019/2020 and processed in 2020/2021 was used for the
assessments. The anisotropic velocity model of the PSDM
volumes were iterated multiple times to achieve optimal
imaging of the subsurface. Post-processing filtering was
applied to the data to improve the signal to noise ratio.
Various sub-stacks of the data were decomposed and
uploaded to an advanced seismic interpretation platform
to highlight useful structural and stratigraphic features.

Near stack seismic data (0 to 15-degree angle stack) was
used for H2 reservoir continuity/distribution assessment
being the data with the best imaging of the seismic
stratigraphic facies and minimal hydrocarbon fluid
imprint.

The regional geological framework of the area was
established using the integration of the control wells,
revalidated maximum flooding surfaces (MFS),
interpreted regional markers, available petrophysical well
logs and validated formation pressure data.

Spectral decomposition attribute (with emphasis on
waveform analysis) was used to assess the reservoir-seal-
pairs (RSPs) of the exploration objective and the H2
reservoir in the appraisal/development scope. The
attribute was extracted from the top to base of H2 at 20ms
window to evaluate H2 internal stratigraphic architecture.

The Gross Depositional Environment (GDE) map was
derived using a combination of the interpreted maximum
flooding surfaces, interval net to gross (NTG), seismic
facies and biostratigraphy.

RESULTSAND DISCUSSION

The GDE map (Figure 1) shows that H2 reservoir and the
exploration objectives are within the lower shelf in the
Middle Messinian. The well correlation section shows
increase in the interval gross thickness from Well-003 to
Well-001 and from Well-1A to Well-001. It also shows a
decrease in the interval NTG from Well-003 to Well-001
and from Well-1A to Well-001. The interval NTG of the
Upper Messinian stratigraphic sequence significantly
depreciates from Well-003 to Well-001. This is attributed
to the distal nature of Well-001 & Well-002 relative to
Well-003. Moreover, Well-001 & Well-002 partially
penetrated the Upper Messinian in the distal blocks.

Figures 2a-2d show the depositional model of the block of
interest. The depositional model is calibrated by Well-001
that tested the footwall of the structure. The figures clearly
show the ponding of the deposits against the green fault
and general progradation to the blue fault especially
within the upper shelf and upper part of the lower shelf.
The high contrast events are sand-prone seismic facies and
the low contrast events are the shale-prone seismic facies.
Evidence of channelization is clearly seen in the figures
and Mass Transport Deposits (MTDs) are seen close to the
bottom of the section near the upper slope.

Figures 3a & 3b show the seismic correlation section from
Well-003 to Well-001. These figures further highlight
event continuity within the macrostructure. The section
also shows that the crestal part of RSP 3 target is risky and
shale-prone due to evidence of intense channelization.

The isopach map of the Upper Messinian (Figure 4)
further shows that the depocenter of the macrostructure is
close to the green fault. It also shows that the crest of H2
reservoir is at the flank of the depocenter in Play 3. Well-
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Figure 1: GDE map of the Middle Messinian & well correlation section flattened on Zanclean 2 Maximum Flooding Surface
(MFS). The interval NTG of the Upper Messinian stratigraphic sequence significantly depreciates from Well-003 to

Well-001.
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Figure 3a: Seismic correlation from Well-003 to Well-001.
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Figure 3b: Seismic correlation from Well-003 to Well-001.
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002, Well-004 & Well-001 tested the distal part of the
depocenter.

Figure 4: Isopach map of the Upper Messinian (Me. 1 —Me. 2). Well-001

N . . The H2 sand/NTG development & connectivity maps
The seismic attribute maps of the deep exploration targets (Figures 7a & 7b) show that the late-stage NE-SW
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Figure 5: Seismic attribute maps of deep exploration targets.

channelised and shale-prone. between Well-002 and Well-001. The degree of
The 3D seismic sections (Figure 6a & 6b) show the  heterogeneity between Well-002 and Well-001 within
interpreted H2 top and the evidence of channelization.  ~3kmis significant.

Multiple channels are clearly seen between Well-002 and

Evidence of channelizationin 3D view

= H2 reservoir is a complex

= Itis ~B0ms thick

Figure 6a: 3D seismic sections showing the interpreted H2 top and the evidence of channelization.
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Evidence of channelizationin 3D view

* H2 reservoir is a complex

= It is ~BOms thick

Figure 7a: H2 sand/NTG development & connectivity. Bright smooth colours signify sand-prone facies probable higher NTG.
Dark colours signify shale-prone facies with probable lower NTG.
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Figure 7b: H2 sand/NTG development & connectivity. Bright smooth colours signify sand-prone facies probable higher NTG.
Dark colours signify shale-prone facies with probable lower NTG.

SUMMARY OF BUSINESS IMPACT Middle Messinian and the placement of the

appraisal/development wells for a gas-bearing reservoir in
High-end geophysical workflow has been successfully  the Upper Messinian. The assessments were underpinned
deployed in Shallow Water Offshore Nigeria to de-risk by a robust regional geological model, high-quality
reservoir presence/quality of an exploration target in the  seismic data, control wells for calibration/ground-truthing
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and high-end geophysical workflows for stratigraphic
attribute generation.

The summary and business impact of the work is:

Reduction of subsurface uncertainty - results
highlighted consistent late-stage lower NTG fairway
between the two key wells that tested H2 reservoir. The
planned appraisal/development wells were further
optimized.

Enabled sand fairways identification, understanding
of reservoir distribution, and supporting well connectivity
assessments.

De-risked/upgraded Deep 2 RSP and downgraded
Deep 3 RSP exploration targets: Results show probable
areas of viable hydrocarbon reservoirs by assessing the
reservoir-prone and reservoir-lean facies within the deep
exploration targets in the Middle Messinian.

Focused staff capabilities and skills on interpreting
and validating various subsurface concepts/models.

Eliminated the guesswork in choosing the right sets
of seismic sub-stacks to combine into enhanced seismic
images and reduced time to achieve this by up to 95% by
enabling staff to iteratively interrogate the uploaded
seismic data on-the-fly.
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