A Multi-Scaled Approach to Time-Depth Conversion

Due to the improved time-depth calibration of the
subsurface, 2 contingent resource (CR) gas reservoirs
were identified in the Adi field, which addresses the
business drive to provide incremental volumes to the gas
plantand enhance NING supply security.

In conclusion, the integration and understanding of
geological and geophysical controls is critical for time-
depth conversion, multi-discipline data integration and
robust subsurface evaluation. Applying the right scaled
methodology and understanding the impact of the chosen
approach is critical to achieving business value.
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Niger Delta Qil Field

'Nwachukwu U. D., 'Oshuntuyi T. O., 'Anene C. C., 'Adebowale F. T., 'Ndianefo K. Uchenna, ’Adegbaju S. Adetola,
*Onyido C. P., ’Orupabo B. A., Olopade A. Olabisi. A. and ‘Adagbasa E. Goodluck
'Esso Exploration and Production, Nigeria Limited, Lagos, Nigeria
*Mobil Producing Nigeria Unlimited

ABSTRACT

This work was carried out in a mature field in deep-water Nigeria with over 16 years of production from 11 oil producers
and 8 water injectors. Declining field production and a depleting opportunity inventory necessitated a comprehensive
field study. The production field study involved the integration of all available static and dynamic data including
reprocessed high quality broadband seismic data, two 4D monitor surveys together with well logs, flow rates, MDTs and
bottomhole pressures from more than 20 wells to characterize the field. Results from the field study will form the basis for
production optimization, reservoir management, and infill drilling. This will be done by leveraging the integrated
Reservoir Models for drill-well and workover opportunity generation/maturation, water injection optimization and other
valued-added field depletion optimization strategies. A dual approach was adopted for the reservoir modeling: one
approach involved detailed conventional methods using Object-based Modeling (OBM) and qualitative seismic-
conditioning; the other used Inversion-based modeling (IBRC) with stronger seismic influence. Both reservoir models
were completed and taken through model initialization and history-matching. The distinct history-matched model
scenarios will be instrumental in generating production forecasts for field management and for infill and workover
opportunity generation/maturation. The dual approach enabled comparison of the pros and cons of both modeling
methods especially with regards to matching existing data, reservoir characterization cycle time and achievement of field
study objectives. This paper outlines key learnings from the application of these two methods in a mature field and
considerations for their application in mature and green fields.

Keywords: Stochastic, 4D Monitor, Object-Based Modeling, Inverson-Based Modeling, History-Matching Models

INTRODUCTION compressional tectonic system with distinct structural
provinces (Corredor et al. 2005). Updip, extension at the
GEOLOGIC FRAMEWORK shelf margin is composed of landward dipping growth

faults and basinward dipping normal faults. Downdip and

This study was carried out on deepwater slope confined
channel complexes located in the Niger Delta Basin
offshore Africa (Fig. 1) at about 1200m water depth. Itis a
brown field asset with over 16 years of production from 11
oil producers and 8 water injectors. The field is set-up by
large regional detachment fold at the transition between an
extensional —contractional system (Fig. 2).

The Niger Delta basin is primarily a linked extensional -
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along slope, is dominantly compressional, composed of
large mobile shale cored folds, followed by smaller scale
buckle folds, and finally ends in belts of low relief toe-
thrusts. This system is driven by gravitational collapse of a
prograding deltaic sediment wedge that prograded along
with the sediment wedge (Corredor et al., 2005; Obi et al.,
2018). The geologic column in the Tertiary Niger Delta is
subdivided into three lithostratigraphic formations namely
the marine Akata Formation, paralic Agbada and
continental Benin Formation (Avbovbo, 1978). Deepwater
reservoirs in this area are primarily in the Agbada
formation.

In terms of stratigraphic framework, the field consist of
deepwater confined to weakly confined channels divided
into four complexes: 1CC, 2CC, 3CC & 4CC (Fig. 3). The
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fairway featured periodic changes in depocenter location
as the main control for repeated switch in position of the
individual channel complexes for the first set of
erosionally confined complexes (1CC —4CC) with lateral
migration from north to south (Fig. 3). Each time there is a
new surge of sediment supply, the new deposits take
advantage of adjacent available depositional low
(considering the depositional inner bank and erosive outer
bank of the preceding cycle), eroding parts of the pre-
existing underlying channel complex and placing its
sediments in the new location (Oomkens 1967, 1974). The
process continues and is repeated when the current
depocenter builds elevation there by creating an adjacent
depositional low for the new cycle of deposits to occupy.
According to Obi and Mode (2011), gradual reduction in
the overall depositional energy with increased
accommodation results in smaller, higher sinuosity, levee
confined complexes such as CC3 — CC4 with more
preserved internal and external margin facies (Fig. 3).

Figure 1: Acreages in the Niger Delta Basin showing study
location in Red box.

(——| studylocation |——>

Objectives and Characterization Workflows

The key driver for this work was to improve reservoir
management and production optimization to deplete the
remaining significant reserves in the deepwater field. This
was accomplished by the integration of'a suite of static and
dynamic data for improved reservoir characterization to
support future workover and infill drilling opportunities. A
dual approach of using the conventional Object-Based
Modeling (OBM) and Inversion-Based Reservoir
Characterization (IBRC) with stronger seismic influence
(Fig. 4) was adopted. The OBM and seismic (IBRC)
modeling reservoir characterization approach allowed the

Structural Gridding
Sample Seismic

OBM Model Seismic Model

Populate Lithofacies
Populate NTG & Poro

Populate NTG & Poro

| Populate Perms | l

Populate Swirr & Sw

History-match ]

Populate Perms
Populate Swirr & Sw
Calculate Volumes

Calculate Volumes

Figure 4: Workflow showing the OBM and seismic model
approach to reservoir characterization including the
dynamic model integration.

Top
Oligocene

Dominated by complex faulted

contractional anticlines

Figure 2: Sub-regional transect showing structural provinces (coupled extensional — compressional system). Study location
sits on a detachment fold in central portion of asset (Courtesy ExxonMobil Deepwater Collaborative 1999).

Figure 3: Stratigraphic framework and depositional sequence
of study area.

team to maximize the availability of good broadband
seismic data with excellent derivate volumes. This
approach also allowed for independent subsurface
realizations of plausible reservoir architecture that were
progressed through history match and forecasts to
constrain the range of uncertainty around assessment of
the remaining recoverable volumes.

Object-Based Modeling (OBM) Workflow

The conventional modeling workflow involved the use of
Environment of Deposition (EOD) maps to generate EOD
property that captures lateral and vertical facies
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boundaries. The EOD OBM approach was used to
introduce channel objects within inter-channel
background. This approach helped to capture finer scale
heterogeneity and facies distribution within each sub-
EOD body (Fig. 5). This workflow essentially allows for
robust integration of observed seismic extraction, well
logs and finer-scale objects which are important to flow.
Five lithofacies assemblages (LA) were interpreted from
well core and well data and modeled using depth trends
generated from the OBM within channel objects, with
variograms oriented along EOD directions. Modeled
lithofacies fractions were checked against target
lithofacies from the wells for consistency.

The workflow Net-to-Gross (NTG) modeling was based
on the Volume of Shale (Vsh) distribution for each Las.
The calculated total porosity from the wells was populated
within the model and constrained based on the LA
distribution. The NTG and porosity models were further
conditioned by seismic inversion Vsand and porosity
volumes respectively. The NTG and porosity map patterns
were checked against the interpreted EOD fairway trends
for consistency.

Nwachukwu et al. / NAPE Bulletin 33 (2); 2024 22-27

. Seiuque Valey

Seismic Provinces- 4CC.

Figure 6: showing the seismic model workflow with the
seismic inversion cross-plot, the corresponding
seismic provinces and the porosity model
cross-sections.

province and conditioned with seismic porosity derivate

volume (Fig. 6).

RESULTS AND DISCUSSION

Model Comparison- Matching Static Data (NTG)
Results from both model approaches show similarities

=~z Lithofacies Model

Figure 5: Showing the conventional model workflow with EOD, Lithofacies and Porosity model cross-sections

Seismic-Based Modeling Workflow

The seismic model approach was implemented with the
use of cross-plot of the seismic inversion (Vclay and
porosity) volumes to discriminate between varying rock
facies and correlate it to reservoir quality. Areas with
similar reservoir properties were classified as seismic
provinces. Four seismic provinces (High Por sand, Low
Por sand, Interbed and Non-net) were defined based on the
set cross-plot cutoffs values (Fig. 6). Net-to-Gross was
calculated from Vsh log and modeled using distribution
curves generated for each seismic facies (province) and
conditioned by Vsand derivative volume (collocated co-
krigging). Porosity distribution curves was generated for
each seismic facies which was modeled for each seismic

and differences in certain aspects with significant trade-
offs in match between the conventional and seismic
models with the key static data. While the seismic-based
model matches the seismic data and most well data, it is
limited in areas with poor correlation between seismic
amplitude strength and sand development (Fig. 7, B-well).
The conventional model closely matches all the well data
and is generally consistent with the seismic data and EOD
interpretation (Fig. 7).

Model Comparison- Matching Static Data (Porosity)

Results from the porosity modeling show that the seismic-
based model matches closely with input seismic data and
well data, except in areas with poor correlation between
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Figure 7: Comparison of NTG model results from the
conventional (OBM) and seismic methods.

seismic amplitude strength and sand development (Fig. 8,
B-well). The seismically conditioned conventional object-
based model closely matches all the well data and is
generally consistent with the seismic data and EOD
interpretation. These differences in model results around
areas with seismic quality issues and poor calibration of
model properties at well locations is critical to achieving a
good history-match.

In-Place Volumes Comparison

In-place volumes estimated from both model scenarios
show comparable total volumes with about 6% difference.
While both models show comparable total volumes, the
distribution of volumes show markedly differences within
some of the individual channel complexes (Fig. 9 & 10).

Dynamic Insights

Initial OBM and seismic model results show a good match
with historical data and represents a good starting point for
history match. The seismic model generally showed a
lower pressure and lower water production compared to
historical data (Fig. 11). The gas breakthrough was
observed to be late in the model compared to the lower gas
production in the historical data after 2019. The result
from the initial OBM showed a good starting point for

Figure 8: Comparison of porosity model results from the
conventional (OBM) and seismic methods.

Model | Bulkvolume | Avg. NTG [Avg. Sw] STOIIP

Scenario | [*1079m3] | [Frac] | [Frac] | [GBO]

Seismic 10 0.17 0.23 1.3
OBM 10 0.19 0.18 1.4

Figure 9: Table showing the in-place total volumes from
conventional (OBM) and seismic methods.

OBM vs Selsmic Model Volume Comparlson

4CC3 4CC2 4CC1 4CCO 3CC3 3CC2 3CC1 3CCO 2CC12CC2 2CC3 1CC1 1CC2 1CC3

HOBM H Salsmic

Figure 10: Comparison of distribution of in-place volumes
within individual channel complexes. 25



history match (Fig. 12). The OBM shows lower pressure
and early water breakthrough in the model compared to
historical data.

Good history-match (flow rate and cumulative
production) was achieved for both model scenarios after
adjustments to some of the static and dynamic
assumptions with lower pressures observed in the seismic
based compared to the object-based model (Fig. 13 & 14).
The two model approaches show differences in the
changes required to achieve history match at the well
level.

The B-producer seismic model history-match required
direct poro-perm multiplication in the dynamic model
(hand-over approach), which sometimes involve geologic
compromises due to the limitations of using seismic
inversion volumes as reservoir facies quality calibration
(Fig. 15).

The B-producer HM in the object-based model was
achieved by an integrated approach which involved
modifying rock distributions (due to flexibility offered by
the EOD objects) in the geologic model and applying
those changes in the dynamic model such that the changes
are consistent with geologic assumptions (Figure 16). The
object based history match was completed much faster

Initial Model Field Result- Seismic
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Figure 11: Initial (out of the box) seismic model field match.
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Figure 12: Initial (out of the box) object-based model field
match.
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Model Field Level History-Match- Seismic
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Figure 13: History matched seismic-based model field
match.
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Figure 14: History matched object-based model field
match.

Well Level History-Match (B-producer Example)
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Figure 15: Well level (B-producer) history matched example
in the seismic-based model.
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Object-Based Model HM.
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Figure 16: Well level (B-producer) history matched example
in the object-based model.
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Figure 17: Production forecast results for both model

scenarios.
Consideration Seismic OBM Comments
Static model cycle time . + 2 weeks for Seismic model vs 1 month for OBM model
+ Additionai 1 month for EOD maps, rock types ete. for OBM madel

Matching seismic data ’ + Qualitative seismic-conditioning applied throughout conventional
modeling workflow. framewark, EODs, property distribution

Matching static well data 3 . + Malch of Seismic model to well data is highly dependent on
quality of sessmic data and inversion

Dynamic model cycle time . « History-maich: 4 months for Seismic model vs 2 months far OBM

Matching dynamic data ’ . + Better match to fate pressures in OBM vs Seismic model

Forecasts . . + Both models provide alternative scenarios which are very useful
for reservoir management, production optinization, opp. gen

Figure 18: Summary of observations from the object-based
and seismic-based modeling.

(~2 months) compared to longer duration (~4 months )
required to achieve similar HM in the seismic based model
Base-case forecasts from both models show similar model
STOIIP and YE 22 cumulative production after
appropriate field constraints were applied (Fig. 17).
Higher recovery factor (RF) and lower water production
was observed in the seismic model compared to the object-
based model (Fig. 17). Both model scenarios show
significant uplift with sensitivities around infill drilling,
increased injection, and increased water handling.

In general, both the model scenarios find usefulness in
varying situations and should be used based on business

needs (Fig. 18)
SUMMARY AND CONCLUSION

In this work, we implemented an Object-Based Modeling
(OBM) algorithm which is a method of using conceptual
channel objects to capture finer-scale heterogeneity and
facies distribution. This approach adopted a stochastic
distribution of architectural elements (such as channels)
represented as distinct objects to provide additional
controls on the rock facies distribution. Lithofacies
interpreted from core and well log analysis were
distributed within the architectural elements and
petrophysical properties of net-to-gross, porosity etc. were
stochastically populated within the Lithofacies.

The seismic-driven approach on the other hand was based
on facies-based seismic inversion products. The seismic
inversion products were analyzed and used to generate
regions of similar seismic responses as seismic provinces
which were used as a proxy for rock facies. Petrophysical
properties were subsequently populated within these
seismic provinces using the same seismic inversion
products as secondary variables in a co-located co-kriging
algorithm. The seismic-driven methodology is fast and
relatively easy to execute and can be applied to support
urgent business decisions. However, this method shows
significant limitation in areas with seismic imaging
challenges and in reservoirs with poor correlation of rock
physics (seismic amplitude) and lithology response.

Seismic-based models are excellent tools for production
forecasts especially during right concept selection and
early production phase. Conventional models
(conditioned to seismic) are recommended for producing
fields that have more wells and longer production history
because they tend to have better match at well locations
and offers more flexibility for faster history match
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