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ABSTRACT

Finite difference numerical modelling is a common technique for simulating seismic waves and can be used for detailed
characterization of the seismic response to CO, migration within reservoir units. These large synthetic datasets also lend
themselves well to machine-learning techniques, both for modelling and analyses. Our research aims to combine the
knowledge acquired from numerical modelling of wave propagation with machine learning to better understand how
migrates within reservoir units over long periods of time at computationally reasonable costs. We outline a finite
difference methodology that simulates waveforms for a large range of synthetic structural scenarios based on the
properties of the clastic rocks and fluids from the Utsira formation in the Sleipner field, North Sea. Transfer learning from
a previously developed model, which was used to generate the seismic response of faulted media is employed in our
neural network to simulate the waveform signature of sequestered CO, in our models. Although when presented with
models outside the range of our training distribution, the network's accuracy reduces. In the future we discuss analysing
the sensitivity of CO, migration to seismic waveforms to help us understand the sensitivity of seismic waves to realistic

storage scenarios.
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INTRODUCTION

Rapidly increasing global population leads to
phenomenal energy demand, not only for lighting our
homes, but also for transportation and to power several
industrial applications to produce goods and services for
the comfort and efficiency of life. Today, more than 80%
of global energy demand is met by fossil fuels.
Nonetheless, fossil fuels are the leading cause of global
warming, and the biggest environmental threat to the
liveability of our planet. Because fossil fuel is mainly
composed of carbon, its combustion releases substantial
amounts of carbon dioxide - a leading player in global
greenhouse gas emissions.

In 2021, global carbon dioxide (CO,) emissions resulting
from energy combustion and industrial activities
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experienced a notable rebound, reaching their peak annual
level. This surge, which saw a 6% rise compared to 2020,
brought emissions to an estimated 36.3 Gt (IEA, 2022).
Although renewable energy options appear promising for
anet-zero emission future, fossil fuels remain a key player
in the energy mix, at least regionally and temporarily. This
fact highlights the critical need for efficient means to
capture, store and utilize global CO, emissions. Just as
how fossil fuels (such as oil and gas) are produced from
the subsurface, geological CO, storage is conceptually as
simple. Captured CO, can be injected back into the
geological subsurface in places such as depleted oil and
gas reservoirs, deep saline aquifers and unmineable coal
beds. The success of such storage, however, requires
effective monitoring methods to ensure the stored CO,
is appropriately contained in the subsurface without any
risk of leakage. One popular approach of such leakage and
containment monitoring relies on geophysical
observations and monitoring sensor networks.

Of the various CO, monitoring techniques, repeated
seismic surveys (also known as 4D seismic or time-lapse
seismic) remains the most common method for tracking
the subsurface migration of stored CO, (Figure 1) over
time. Time-lapse seismic has the ability to provide
constraints.

37



A Strategy for Using Machine Learning in Modelling

needed to detect changing rock property related to
changes in fluid, pressure and temperature conditions in
the host rock formations (IPCC, 2005, The Royal Society,
2022). Such constraints are powerful as they potentially
improve our understanding and visualization of the
progressive development of CO, plumes or migration
pathways (Chadwick et al, 2009, Chadwick et al, 2010,
Chadwick and Noy, 2010).

However, seismic surveys can be expensive to conduct as
they involve special equipment, acquisition, processing,
and interpretation. The cost of regularly conducting
seismic surveys may not be justified, especially for long-
term CO, monitoring where ongoing data collection and
interpretation can quickly become prohibitively
expensive. The use of numerical methods, governed by
the discretization of the wave equation allow for the
generation of enough synthetic data for proper
understanding and modelling of CO,plume development
(Arts et al, 2003, Carcione et al, 2006, Rubino et al, 2011,
Williams and Chadwick, 2021). The application of neural
network to these methods, can provide a significant
increase in computational speed as seismic responses are
output in one inference step rather than iteratively
modelling the seismic wavefield through time (Moseley et
al, 2020). In addition, neural network helps identify
previously unknown links between input data and output
to make predictions in unseen input examples (Mattéo et
al., 2021) in order to give accurate, consistent and
objective output models (Liand Li, 2021).

METHODOLOGY
Building models

We build 2D models based on the Sleipner field in the
North Sea, where CO, is currently been stored in its Utsira
formation. Models are 2048m in width and depth and we
use the rock and fluid data gathered from the field area
(Table 1). The model is comprised of the water column,
overburden, caprock, reservoir and underlayer or under-
burden, assuming scenarios for before and after CO,
injection. To start, the reservoir rock contains brine. CO, is
then added in varying saturation percentages, thicknesses
and column widths after injection. The generated models
were carefully visualized to check for unrealistic models.
Example models are shown in Figure 2.

Table 1: Rock and fluid data gathered from the Sleipner field
and used to construct seismic models. The range in
parameter values considered in model building is
shown

Reservoir properties

P wave velocity: brine sand (m/s) 1950-2100

2000-2150
Density: brine sand (Kg/m?)
Reservoir thickness (m) 20-300
Caprock thickness (m) 6-150
CO, saturation (%) 0-90
CO; plume thickness (m) 0-70
CO, plume width (m) 0-400

Figure 1: Time-lapse seismic images illustrating the CO, plume development, spanning the 1994 dataset (before injection) to
the 2006 datasets (after injection) (Adapted from Chadwick and Noy, 2010).

Motivation

Here we consider the use of finite difference numerical
modelling method for simulating the seismic response of
CO, storage in saline aquifer. Our aim is to simulate and
predict the seismic signature of CO, storage over a long
period of time, which is crucial for the success of CCS.
Additionally, we apply machine learning algorithms to
these numerical model examples, to uncover hidden
patterns and correlations between the model examples and
their pressure responses at a reduced computational time.
This thereby enables us to make data-driven decisions and
gain deeper insights into subsurface CO, behaviour.
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Figure 2: An example of a velocity (left) and density (right)
model where 20% CO, is injected into a lens 70 m
in thickness and 200.0 m in width.
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FD simulations

Our 2D earth model is divided into 256 by 256 grid points,
with an 8m separation. We use a 10 Hz dominant
frequency Ricker source at a depth of 16 m in water and
record the corresponding pressure response at 128
receiver locations, each placed 15 m apart on the seabed. A
time-stepping scheme is used and implementing
Komatitsch and Martin (2007)’s SEISMIC_CPML solver,
which uses the finite difference method to solve the
discretized equations over time. The numerical solution
calculates pressure changes at each grid point during each
time step. Simulation results are collected at different time
steps to visually validate how the pressure field evolves
over time.

CNN strategy

We consider a combination of 30,000 input material
property (velocity and density) models and their
corresponding pressure responses. These serve as ground
truth for the neural network models. To accomplish this,
we build on Moseley et al (2020)’s pre-trained neural
network models, which successfully used the encoder-
decoder architecture to learn how to simulate seismic
waves in 2-D faulted acoustic media. Here we apply this
approach to modelling the seismic response of CO,
storage.

With two model inputs in our case, and a larger grid size,
we add additional layers to both the encoder and decoder
to accommodate our larger input sizes. The encoder takes
the two-input data and compress them into a lower-
dimensional representation called the "latent space." The
decoder on the other hand, takes this latent space
representation and generates synthetic seismic wavefields,
matching the target data (Figure 3).
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Figure 3: Encoder-Decoder Neural Network Architecture
(Adapted from Li ef al., 2020). Given material
property inputs, source location added to the latent
vector, the network outputs the pressure responses
at the receiver locations.

Training Process:

We train the adapted architecture on our generated
synthetic dataset. The dataset is splitinto
training and validation sets in the ratio 24,000:6,000 for
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training the model and monitoring its performance during
training, respectively. We fine-tune the model's weights
and biases to optimize it for the task. The training is carried
out in batches of 50 to speed up convergence and reduce
memory requirements. The model learns to generate
synthetic seismic wavefields that match the target data. We
continuously monitor the model's performance on the
validation set during training by checking for overfitting.
Once training is complete, we evaluate the model on 3000
unseen test dataset to assess the model’s capabilities.

RESULTSAND DISCUSSION

We create 13,365 different velocity models representing
different cases of before and after Co, injection. The
velocity and density values of the rock and fluid are
consistent with plausible geological expectations (Figure
2). Our FD solver is able to generate the pressure response
at different receiver positions for 10,000 velocity and
density models, each with 3 random source locations,
thereby resulting in 30,000 simulations (Figure 4). The
encoder-decoder NN accurately captures the patterns
between the input data and the label, thereby giving
outputs that correctly simulate the receiver response of the
wave. The network is able to generalize to new, unseen
data (Figure 5) within the range of training data.

Figure 4: FD simulation example for a 400 m wide and 35 m
thick plume of 2% 2. (a) Velocity model; (b)
Density model; (¢) Wavefield for a moment in time
(the source location is shown as a red dot, the
receivers lie along the horizontal blue line below
the source); (d) An example of the pressure
response recorded at the receiver locations.
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Figure 5: Unseen test dataset example simulation. From left to right: Velocity model with source location (white circle);
network prediction; FD simulation; and the difference between the two.

CONCLUSION

The seismic method is a good CO, monitoring tool; we
build models to help us understand how waveforms
behave with respect to changes in the subsurface for early
remediation. Neural network can simulate the seismic
response to changes in CO, concentration and location in
simple generic models. The network performs well on
new unseen data but struggles once the unseen data are for
models outside the range of those in the training data
frame. Our next step is to systematically explore models
of CO, storage, assessing how well seismic reflection
surveys can detect differences between models. This
sensitivity analysis is an important step in interpreting
time-lapse seismic data.
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