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ABSTRACT

Proper analysis of petrophysical parameters is very crucial in the reservoir formation evaluation process. Petrophysical 
parameters are typically calculated from well logs.  Missing values and incomplete well data also contribute to the 
degrees of complexity that are associated with the effort to reduce uncertainties. This in turn reduces the quality of the 
interpretation done to evaluate petroleum reservoirs. A machine learning approach to reproduce the missing values using 
the bootstrap aggregation (bagging) learning paradigm is proposed. Bagging is an ensemble machine learning technique 
used to evolve a consensus output from multiple tree-based learners. Six wells from a field in the North Sea were used to 
optimize and validate the models. To further demonstrate the efficiency of this method, missing sections on the neutron 
and density logs corresponding to the reservoir section of the test wells were also estimated. The bagging models 
significantly outperformed the traditional decision tree model with correlation coefficient (R2) scores in the range of 0.77 
to 0.93, and root mean square error values as low as 3.99 for the validation wells. The results demonstrate the increased 
accuracy and reliability of the bagging machine learning paradigm to solve missing well information problems compared 
to the traditional single decision tree method. Furthermore, the result shows how bagging as a machine learning 
technique can be used to increase the quality of petrophysical interpretation. Consequently, this approach helps to reduce 
uncertainties involved in the reservoir formation evaluation process.
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INTRODUCTION

High quality well log data are essential for an efficient 
and effective reservoir characterization process. This is 
because well log data are routinely used for wavelet 
estimation, low frequency model building, seismic 
velocity calibration, and time-to-depth conversion 
(Kumar et al.,2018).  Reservoir formation evaluation is 
done using petrophysical properties and parameters 
calculated and derived from well logs. Petrophysical logs 
that are acquired through wireline logging are subjected 
to various operational conditions arising from the logging 
process. In most cases, these logs are recorded with 
missing values or missing sections arising from cost 
maintenance, geology of the environment or logging 
instrument malfunction. Petrophysical parameters 

calculated from well logs determine the final results of the 
formation evaluation process. These petrophysical 
parameters are usually calculated with some degrees of 
uncertainties arising from a number of assumptions 
ranging from the depositional environment, through the 
reservoir fluid type, lithology, stress, to strain conditions 
of the well bore. Missing values or sections in well logs 
essentially represent sections of no data, which can 
introduce noise to the formation evaluation process. 

Methods of Estimating Petrophysical Properties
The most conventional way to predict missing data in 
petrophysical properties is to consider the correlation 
between the porosity and permeability given the well log 
records. This may however, result in inaccurate prediction 
(Al-Mudhafar et al.,, 2014). Apart from using machine 
learning methods for the estimation of missing 
petrophysical data, statistical methods and algorithms 
have also been used. Al-Mudhafar et al.,(2014) proposed 
the mean substitution (MS), iterative robust model-based 
imputation (IRMI), multiple imputation of incomplete 
multivariate data (MIIMD), random imputation of 
missing data (RIMD) algorithms for solving missing 
values for petrophysical analysis. The RMID method, 
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along with other algorithms proposed were applied based 
on the deductive statistical inference to input incomplete 
data (Al-Mudhafar et al.,, 2014). Robust sequential 
imputation algorithm estimates the missing values in a 
dataset by minimizing the determinant of the covariance 
of the augmented data matrix (Al-Mudhafar et al.,, 2014).     

Machine learning methods have been used extensively for 
the prediction of petrophysical properties and estimating 
missing values. Such methods range from linear models 
to tree models, artificial neural networks, and recurrent 
neural networks. Chijioke et al., 2018 employed a ResNet 
deep learning architecture for well logs missing values 
forecast and using Apache Spark's distributed machine 
learning stochastic linear regression model. Model 
performance using the latter approach was poor giving an 
accuracy of about 10%. A two-layer artificial neural 
network (ANN) with the relu activation functions were 
applied. Model performance was estimated with the root 
mean square error (RMSE) and MSE. Their RMSE was 
estimated to be 10.2 for the test data. The ResNet model 
applied with auto encoders failed to improve their model 
performance. Gradient boosting decision tree (GBDT) 
and neural network approaches was proposed by Vito et 
al., 2020. While both model approaches were within 
acceptable limits using the MSE as metric, it was shown 
that the GBDT model consistently outperformed the 
neural network model (Vito et al., 2020). Rui et al., 2017 
used ANN, random forest, gradient boosting, and linear 
models for estimating missing gaps in wireline logs. 
Statistical inference was applied for model performances. 
The ensemble methods (random forests and gradient 
boosting) performed better than the linear approaches for 
every gap size quartile, with statistical significance (Rui 
et al., 2017).

Tree Based Models
Tree based machine learning models are a family of 
machine learning algorithms that operate based on certain 
decisions met or not met in the data set. They are 
subdivided into decision trees, decision forests, and 
boosting trees models. A decision tree can be used to 
represent and implement simple statements or 
“decisions” to be executed based on certain conditions 
met. By deciding on which of the features of a data set to 
split on and when to stop splitting, a final decision is made 
by a decision tree. Each node in a tree terminates with 
either a value or triggers another conditional statement to 
be evaluated. Decision tree algorithms are implemented 
to minimize the entropy (degree of randomness or 
disorderliness) and to maximize information gain of 
features within the dataset. This is achieved by 
minimizing a certain loss function. The Gini impurity 
metric is used to calculate the probability of making a 
correct probability. It also refers to how much entropy has 
been removed from the dataset. Decision forests on the 

other hand are constructed by sampling different portions 
of the dataset to build multiple decision trees which results 
are eventually averaged. This is referred to as bootstrap 
aggregation where “bagging” takes its name from. 

where E in equation (1) represent the information entropy            
 in a in a dataset
        pi is the probability of randomly picking an element  
 of class i
 C represent the number of classes present in the  
 dataset

Equation (2) represent the Gini impurity of classifying of a 
data point where C represent the number of classes in the 
data and pi represent the probability of picking a data point 
with class I.

Figure 1: A decision tree method of operation.

Bagging is a machine learning ensemble method that 
averages the prediction of multiple single decision trees in 
an attempt to increase the prediction accuracy and 
metrics. This helps to reduce the bias and possible 
variance that could have been associated with a single 
decision tree and also prevent the variance that could have 
been associated with using gradient boosting decision 
trees when not properly regularized. Bagging algorithms 
have shown high accuracy on test datasets due to their 
ability to generalize well on unseen data sets. With 
sufficient numbers of trees, the chances of overfitting are 
greatly reduced. Tree based models have been put to use in 
the past for estimating petrophysical data. Vito et al., 2020 
proposed a gradient boosting tree approach to resolving 
missing petrophysical data from well logs.      

Machine Learning Ensemble Techniques
Ensemble method in machine learning allows for multiple 
weak (base) learners to improve the accuracy and 
reliability of machine learning models. Ensemble 
methods are learning algorithms that construct a set of 
classifiers and then classify new data points by taking a 
default or weighted vote of their predictions based on the 
classical bias–variance decomposition of the error. It has 
been shown that ensembles can reduce variance or both 
bias and variance (Matteo Re et al.,2012). While there is 
no unified theory underlying ensemble methods (Matteo 
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Re et al.,2012), they have been implemented and 
abstracted into algorithms to aid machine learning 
predictions and improve their accuracy. Ensemble 
techniques could be as simple as averaging the prediction 
of two different regressor algorithms in an attempt to get a 
more generalized result or building several base models 
with different subsets of the training data to using 
multiple algorithms with different hyperparameters to get 
diverse but similar results which a meta learner can train 
on to get even more efficient results. This is referred to as 
stacking.

DATA  COLLECTION
Six different wells from the North Sea were used to build, 
optimize, and validate the proposed models. Two of the 
wells served as the test datasets while the other four were 
used simultaneously to create the training and validation 
data sets. The gamma ray, neutron porosity, density, 
resistivity, and Delta T (DT) logs were selected from the 
complete well logs suite to create the datasets. The choice 
of logs was based on occurrence in the majority of the 
wells with relatively little amount of missing values 
compared to other logs. The two wells (F15B and FT2) 
were chosen as the test datasets due to the unlogged DT in 
the log suite. Four training and validation datasets were 
created each from the other four wells (F1, F11A, F12, 
F15D). Each training dataset was created by using three 
of the well logs data while the remaining well served as 
the validation data set in which the trained model was 
evaluated on.

Exploratory Data Analysis
The primary aim of exploratory data analysis (EDA) is to 
examine the data for distribution, outliers, and anomalies 
to direct specific testing of the hypothesis (Komorowski 
et al.,2016). During EDA, the data is simply visualized, 
plotted, manipulated or transformed, without any 
assumptions, in order to help assess the quality of the data 
and building models (Komorowski et al.,2016). EDA 
helps to provide insights that can be useful during data 
modeling. When the distribution is skewed or the data 
structure obscures the pattern, the data could be rescaled 
in order to improve interpretability (Chong Ho Yu, 2010). 
The skewness of a data is the degree of distortion of the 
data from a normal distribution.

Bivariate Analysis
The bivariate analysis of the logs with respect to the target 
variable (DT log) is done to visualize the relationships 
and distributions between the feature (input) logs and the 
target log. This as well helps to capture information about 
outliers, and unreal and spurious log values. The 
combined logs instead of the individual logs were rather 
used for the bivariate analysis since this will be fed 
directly into the model. 

Skewness of Target Variable (DT Log) in Each 
Validation Dataset
The degree of skewness of the target variable is from a 
normal distribution. This has the potential to affect the 
way the model is trained as it negates most algorithms' 
assumptions of a normal distribution for a regression 
problem This is similar to the class imbalance problem in 
the case of a classification problem. For a right-skewed 
target distribution, the model will be trained more on the 
portion of data that falls under the right part of the 
distribution and vice-versa for a left-skewed target 
distribution. This can also impair features importance 
analysis. Figure 5 shows the results of the skewness 
analysis of the training dataset when (a) Well F1 and (b) 
F11A are used for validation respectively.

The distribution plots of the validation targets all fall 
within range of a normal data distribution. In cases of a 
highly skewed distribution, the data is scaled down and 
used to train the model. Predictions made on the test set 
with the scaled model are then scaled back up using the 
inverse function used for downscaling the training target.

DATA PREPARATION
Missing values/sections in all datasets were removed to 
allow for a cleaner dataset devoid of biases from using 
other methods of dealing with missing values. A larger 
amount of these missing values account for unlogged data 
starting from most of the well tops. These parts were 
dropped off from both the training and validation datasets 
to allow the algorithms work on the dataset properly. 
Missing and infinite values are seen as ambiguous for 
algorithms like random forest and extra trees regressors.

Data Scaling and Normalization
The data was passed through a data scaling or 
normalization process. Normalization is a scaling 
technique or a mapping technique or a pre-processing 
stage where we can find a new range from an existing one 
range (Patro et al.,2015). Data normalization is the 
process of casting the data to the specific range, like 
between 0 and 1 or between -1 and +1 (Ali et al., 2014). 
This transforms the data into a normal distribution with a 
standard deviation of zero and a mean value of 1. 
Normalization is required when there are big differences 
in the ranges of different features (Ali et al.,2014). The 
effects of data scaling and normalization are largely seen 
on linear models like linear regressors and SVM. Tree 
based models like decision trees and forests have however 
been observed not to require scaling as the method of 
making predictions does not require any scaling. Neural 
networks on the other hand however require scaling and 
normalization of extreme values (outliers). Data scaling 
was done to reduce the magnitude of the petrophysical 
properties passing through the algorithms to speed up 
training time.
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Figure: 2 (a - d) showing the petrophysical logs (features) against the training label (DT log) for Well F1.

Figure 3: (a - d) showing the petrophysical logs (features) against the training label (DT log) for Well F11A.

.
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Figure 4: (a - d) showing the petrophysical logs (features) against the training label (DT log) for Well 
                 FT2.
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Figure 5: (a - d) showing the petrophysical logs (features) against the training label (DT log) for Well F12.
 
 
 

 
 
 
 

 
 
 
 
 
 
a. When Well F1 is used for validation  b. When Well F11A is used for validation 
 
 
 
 
 
 
 
 
 
 
      
 
      

 
c. When Well FT2 is used for validation  d. When Well F12 is used for validation 

           
Figure 6: (a) - (d) show the histogram distribution of the target log in wells F1, F11, F12, and FT2 respectively.     
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The StandardScaler module from sklearn preprocessing 
package was used. It standardizes features by removing 
the mean and scaling to unit variance. The standard score 
of a sample x is calculated as:
z = (x - u) / s
where u is the mean of the training samples scores and s is 
the standard deviation of the training samples.

Table 1: Summary of Predictions

Figure 7: Showing the predicted DT logs from the three 
                 models for validation Well F12 against depth (m).

Figure 8: Showing the predicted DT logs from the three 
                 models for validation well F1A against depth (m).

?

Figure 9: Showing the predicted DT logs from the three 
                 models for validation well F1A against depth (m).

Figure 10: Showing the predicted DT logs from the three 
                          models for validation well F1A against depth (m).
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(a)

(b)

Figure 11: (a) and (b) Show the predicted DT logs from the 
                  three models for test wells F15 and F11B against 
                  depth (m).

MODEL OPTIMIZATION
Two bagging algorithms, a random forest and extra trees 
regressors and the conventional single decision tree 
regressor all from the Python scikit-learn library were 
used. A 10-fold cross-validation (CV) was used with each 
algorithm to get a more generalized result and to estimate 
the overall performance of the models on unseen data. 
This is also a data resampling technique. In k-fold cross-
validation, the available training set is partitioned into k 
disjoint subsets of approximately equal size (Berrar 
2018). The model is then trained with k-1 of the folds and 
evaluated on the last one.

Hyperparameter tuning with GridSearchCV was done to 
obtain optimal hyperparameters for the training of each 
model. It aims at finding a tuple of hyperparameters that 
yields an optimal model that minimizes a predefined loss 
function on a given independent data (Ghawi et al., 2019). 
A three-fold cross-validation was used to conduct a grid 
search on the hyperparameters. The number of estimators 
(for both proposed regressors), minimum split at each tree 
leaf node, minimum samples at each leaf node, minimum 
impurity split were tuned to obtain each model's optimal 
hyperparameters. A maximum depth of 6 was chosen at 
discretion for all three algorithms. This was done to 
prevent overfitting of the models on the train dataset. 
Overfitting maps out noise as interested relationships 
rather than the real data signature. The tree depths were 
chosen as 6. This is because the GridSearch 
hyperparameter tuning could only give a maximum depth 
that was fit for the training datasets. 400 trees were 
obtained as the optimal estimators for each bagging 
algorithm. Above 400 trees, model improvement was not 
significant.

MODEL PERFORMANCE MEASURES
The model performance was optimized and evaluated 
using the root mean square error (RMSE) and the R2 score 
(coefficient of determination). The RMSE is the standard 
deviation of all the prediction errors. It measures the 
deviation of the predicted values from the actual values. A 
very high value indicates a more error prone prediction 
while a lower value shows more prediction accuracy. R2 
score is a measure of how fit the predicted values are to the 
actual values. R2 scores range between -1 to +1. A R2 
score of +1 indicates a perfect positive fit while -1 
indicates a perfect negative fit.

RESULTS & DISCUSSION
The comparative results of the performances using the 
optimized models to predict the missing values in the 
testing dataset are shown in Table 1.
Both bagging algorithms outperformed the single 
decision tree algorithm. In all validation cases however, 
the extra trees regressor outperformed the random forest 
regressor considering both the RMSE scores and 
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correlation coefficient scores. All three algorithms were 
used to make predictions on the test logs to reproduce the 
DT log which were missing in wells F11B and F15D. 

2
RMSE and R  validation scores serve as a guide into 
choosing the most accurate algorithm or model to use for 
replacing the missing logs. At depth interval 3050m - 
3100m in Well F12, the NPHI, RHOB and RT logs 
recorded a missing section altogether. The extra Trees 
regressor was used in reproducing the missing section of 
the well.

PREDICTED LOGS COMPARISON
Comparative plots of the actual DT log and the 
predictions based on random forest and extra tree models 
for Wells F12, F11A, F1, T2, F15, and F11B are presented 
in Figures 6 through 10. The predicted DT values were 
plotted against their corresponding depths. A uniform x-
axis scale was shown for all log types to properly display 
the variations and similarities among the curves 
produced. Spike readings on the actual log plots failed to 
appear on the prediction logs. The extra trees regressor 
log (ETR) showed a more distinct log signature compared 
to the other predicted logs; decision tree (DTR) and 
random forest (RF) logs. This is due to its better 
prediction accuracy hence showing more similarity to the 
actual log plot compared to the other two models.

CONCLUSION

Bagging models have proved to offer better prediction 
accuracy and generalization on unseen wells compared to 
single decision trees models. They can be used to save 
logging and drilling costs in the field by estimating log 
records from other recorded logs. It also offers the benefit 
of manpower and time conservation. Estimation of 
missing well logs will provide a better quality data 
leading to a better formation evaluation and reservoir 
characterization.

Machine learning models are not just dependent on how 
sophisticated the algorithms are but also how robust (in 
terms of quantity and quality) the training data fed into the 
model is. We suggested that the model performances can 
be improved through the following ways:
� Using more logs from the wells.
� Feeding the machine learning models with more data 
 (feature generation and creation from existing data). 
 Calculating more petrophysical properties like 
 porosity, permeability etc.
� Feature selection: Checking for feature importance 
 and dropping features likely to cause overfitting.
� Feeding the models with better data (feature  
 engineering). 
� Carrying out log transformations, trigonometric 
 transformations, etc.
� Stacking is done by making an ensemble of weak 
 (base) learners with a meta algorithm to improve the 

 predictions of machine learning models.
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APPENDIX
 DEPTH DT GR NPHI RHOB RT 
count 9822.0000 9822.0000 9822.0000 9822.0000 9822.0000 9822.00 
mean 3107.8500 77.4106 48.6247 0.1668 2.4809 2.7971 
std 283.5511 13.0543 66.3325 0.0919 0.1358 3.5342 
min 2616.8000 50.1782 1.2393 0.0332 1.8012 0.0933 
25% 2862.3250 69.1022 11.1478 0.1081 2.4259 1.2510 
50% 3107.8500 74.3363 34.5119 0.1449 2.5332 2.2546 
75% 3353.3750 80.8687 53.7058 0.2034 2.5756 3.3496 
max 3598.9000 128.7630 873.71940 0.6454 2.7486 197.7940 

 

WELL F1

 DEPTH GR NPHI RHOB RT 
count 13566.0000 13566.0000 13566.0000 13566.0000 13566.0000 
mean 3980.1500 36.7610 0.1848 2.3768 2275.3537 
std 391.6311 28.8643 0.0542 0.1648 11331.0795 
min 3301.9000 5.9773 0.0679 2.1319 0.2898 
25% 3641.0250 20.2835 0.1521 2.2292 3.3612 
50% 3980.1500 28.1454 0.1799 2.3296 6.3215 
75% 4319.2750 46.7791 0.2005 2.5316 20.3874 
max 4658.4000 269.9139 0.4843 3.0644 62290.7695 

 

WELL F15D

 DEPTH GR NPHI RHOB RT 
count 15466.0000 15466.0000 15466.0000 15466.0000 15466.0000 
mean 3971.4500 33.9404 0.1833 2.3971 2255.3653 
std 446.4793 19.7533 0.0590 0.1812 11450.4350 
min 3198.2000 2.6870 0.0240 1.6270 0.1400 
25% 3584.8250 17.9550 0.1550 2.2300 3.2672 
50% 3971.4500 28.7230 0.1760 2.3740 7.8340 
75% 4358.0750 43.5857 0.2090 2.5600 52.6257 
max 4744.7000 123.3620 0.5410 3.0900 62290.7700 

 

WELL F11B

 DEPTH DT GR NPHI RHOB RT 
count 11464.0000 11464.0000 11464.0000 11464.0000 11464.0000 11464.0000 
mean 3150.1500 77.7336 32.9029 0.1657 2.4683 103.3138 
std 330.9516 15.5498 51.0344 0.0996 0.1532 2334.4001 
min 2577.0000 53.1650 0.8520 0.0100 2.0330 0.1030 
25% 2863.5750 66.1840 8.5892 0.0930 2.3370 1.8230 
50% 3150.1500 71.5790 19.7135 0.1300 2.5290 3.0810 
75% 3436.7250 87.6747 38.3400 0.2230 2.5810 4.9732 
max 3723.3000 126.8270 1124.4030 0.5590 3.0250 62290.7700 

 

WELL F11A

 DEPTH DT GR NPHI RHOB RT 
count 19433.0000 19433.0000 19433.0000 19433.0000 19433.0000 19433.0000 

mean 3549.8795 75.4962 32.9475 0.1533 2.4951 9.1746 

std 561.8629 14.9014 45.2533 0.0981 0.1299 502.0105 
min 2577.0000 48.9280 0.8380 -0.0030 2.0900 0.0710 
25% 3062.8000 65.4020 8.4350 0.0780 2.4600 1.9270 
50% 3550.7000 70.6800 13.1590 0.1280 2.5290 3.0500 

75% 4036.5000 82.8270 33.6110 0.2030 2.5840 5.7780 
max 4522.3000 136.2530 437.8230 0.4860 3.0040 62253.9570 

 

WELL FT2

 DEPTH DT GR NPHI RHOB RT 

count 12860.0000 12860.0000 12860.0000 12860.0000 12860.0000 12860.0000 

mean 2404.3192 106.7495 90.1551 0.2788 2.1224 33.4969 

std 604.8413 27.9914 42.2897 0.1420 0.2275 327.1620 

min 1368.7044 -68.8277 12.7895 0.0282 1.3568 0.1000 

25% 1869.1479 79.5656 49.4770 0.1827 1.9388 0.5898 

50% 2408.3010 115.4020 106.0727 0.2631 2.1211 0.8917 

75% 2919.8697 131.9252 126.9516 0.3716 2.2978 2.4949 

max 3442.5636 161.0148 179.8782 1.1138 2.9392 5000.0000 

 

WELL F12
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