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Lithofacies Characterization in Seismic Space Using Rock Physics-based 
Decoupling: Application to Niger Delta Turbidite Reservoirs 

ABSTRACT

Lithofacies characterization is commonly used in reservoir model building, well planning and placement, and reservoir 
management because facies majorly control porosity and permeability. However, lithofacies characterization or 
classification in seismic space is highly dependent on the ability to relate lithofacies to significant variations in rock 
physics, and seismic properties. The complex nature of turbidites, linked principally to their heterogeneous nature arising 
from successive sedimentation, erosional episodes, and tectonics, usually complicates this dependency due to significant 
overlaps in rock physics behavior among lithofacies in different stratigraphic intervals in the same producing field. These 
overlaps often bias lithofacies classification in turbidite reservoirs if rock physics-based reservoir decoupling is not 
applied. To show how this bias and the resultant uncertainties in the predictiveness of facies probability cubes can be 
avoided, we present a case study from an oil field in the Deep Offshore   Niger Delta, which comprises of Middle to Late 
Miocene sands and shales. The reservoirs are in a highly faulted turbidite setting within a framework consisting of seven 
grouped electrofacies. Multi-well rock physics analysis at seismic scale was applied to identify statistical facies 
populations that exhibit significant overlaps in rock physics properties across stratigraphic intervals. Based on facies 
overlap sensitivities in rock physics space using inverted IP and Vp/Vs attributes from Ocean Bottom Nodes (OBN) 
seismic data extracted at training wells, the vertical sequence was divided into three separate intervals consisting of facies 
with seismically important rock physics variations. Facies probability cubes produced using the decoupling approach 
exhibited better correlations at wells, in comparison to those produced using the conventional technique. Cross validation 
at blind wells indicated that the decoupled facies cubes are more predictive. Additional QCs showed that the facies cubes 
are robust as input for reservoir model building, well design and placement, and reservoir management. 
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INTRODUCTION

Seismic reservoir characterization consists of strategies 
and quantitative seismic interpretation techniques such as 
AVO/AVA analysis, seismic inversion, seismic attribute 
analysis ,  l i thofacies  ( l i thology and f luids)  
characterization or classification, et cetera applied in 
hydrocarbon exploration and/or development for the 
description of reservoir units relative to their bounding 
materials (i.e., non-reservoirs). Abundant literature exists 
on the definitions, theory, and applications of seismic 
reservoir characterization (Hunt et. al., 2012; Avseth et. 
al., 2014; Oliveira et al., 2018). Over the years, declining 
oil revenues have tilted business models in the oil industry 

towards cost efficient recovery optimization from 
existing fields and the targeting of nearby undeveloped 
prospects or infills to enhance productivity and 
investment returns. Like other petroliferous basins, 
seismic reservoir characterization is routinely applied in 
oil fields in the Niger Delta in reservoir model building, 
well placement, reservoir monitoring, the targeting of 
infills or undeveloped hydrocarbon pools, which may 
either be laterally or vertically offset from developed 
areas of both green and brown fields. 

This paper highlights the application of lithofacies 
characterization in seismic space (i.e., a quantitative 
seismic interpretation technique) to provide lithofacies 
probability volumes from inverted Ocean Bottom Nodes 
(OBN) seismic data in a turbidite oil field in the deep 
offshore Niger Delta. The lithofacies volumes were 
required to provide quantitative information on the 
distribution of geological facies, porosities, and 
permeabilities for reservoir model building, well 
planning, geosteering, and reservoir management. 
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Lithologies in the study area consists of shales and sands 
which are heterogeneous due to a deep water setting 
which in geologic past was conducive for successive 
sedimentation, erosional episodes, and tectonics. 
Lithofacies characterization is the seismic classification 
of petrophysical properties or lithofacies based on the 
availability of a robust link between cross plot-based rock 
physics behavior (e.g., acoustic impedance, IP versus 
Vp/Vs color coded by volume of clay) and the reservoir 
property (e.g., volume of clay) of the lithofacies of 
interest. Being a classification in seismic space, it is 
highly dependent on the ability to relate lithofacies to 
significant variations in rock physics, and indeed seismic 
properties. To say the least, the complex nature of 
turbidites, linked principally to their heterogeneous 
geologic nature may sometimes complicate the seismic 
space lithofacies classification due to significant overlaps 
in rock physics behavior among lithofacies in different 
stratigraphic intervals in the same producing field. These 
overlaps often bias lithofacies classification in turbidite 
reservoirs with resultant uncertainties in the 
predictiveness of facies probability if rock physics-based 
reservoir (interval) decoupling is not applied. Figure 1 
provides a simple illustration of the principle of 
lithofacies probability characterization or estimations 
from a rock physics attribute cross plot. According to 
Michelena et. al., (2010), a rectangular grid is 
superimposed on the cross plot and individual 
probabilities of the different scenarios (red and blue dots) 
are calculated for each rectangle, with probabilities then 
assigned throughout the whole 3D seismic volume. 
Further analysis of the cross plot reveals two major 
regions of overlap between the red “facies” and blue 
“facies” which correlate with higher and lower 
probabilities of red “facies”. Statistically, it would be 
easier to characterize the blue “facies” in the region with 
lower probability of red “facies” due to the much lower 
overlap. The reverse is however not the case in the region 
with higher probability of red “facies”. This reverse case 
is the scenario that the current study handles in our study 
area.

Some authors have recognized that lithofacies 
characterization works best when there is no significant 
overlap in rock physics behavior between lithofacies and 
have proposed some quantitative statistical schemes (e.g., 
facies flagging based colored multi-dimensional cross-
plotting, geostatistical inversion, et cetera) to overcome 
this limitation in seismic (i.e., elastic) space (Michelena 
et. al., 2010; Pendrel et. al., 2017; Singh et. al., 2019). 
However, these approaches are to a certain degree 
computationally intensive and require various 
assumptions. In this study, we apply a qualitative based 
decoupling approach which entails the separation of a 
gross logged interval into distinct sub-intervals whose 
lithofacies do not suffer significant overlap in rock 

Figure 1:  Probability estimations from attribute cross plots 
                 illustrating the principle of lithofacies 
                 characterization. A rectangular grid is 
                 superimposed on the cross plot and individual 
                 probabilities of the different scenarios (red and 
                 blue dots or facies) are calculated for each 
                 rectangle. These probabilities are then assigned 
                 throughout the whole seismic volume. 
                 After Michelena et. al., (2010).

physics behavior. To avoid uncertainties in the 
predictiveness of facies probability cubes due to observed 
overlaps in rock physics behavior among lithofacies in 
the study area, multi-well rock physics analysis at seismic 
scale was applied in this study to identify statistical facies 
populations that exhibit significant overlaps in rock 
physics properties across stratigraphic intervals. Based 
on facies overlap sensitivities in rock physics space using 
inverted IP and VP/Vs attributes from the inverted OBN 
seismic data extracted at training wells, the vertical 
sequence was divided into three separate intervals 
consisting of facies with seismically distinguishable rock 
physics variations. Facies probability cubes produced 
using the decoupling approach exhibited better 
correlations at wells, in comparison to those produced 
using the conventional technique. Cross validation at 
blind wells indicated that the decoupled facies cubes are 
more predictive. Additional QCs at training wells and 
attribute extractions showed that the facies cubes are 
robust enough for reservoir modeling, well design & 
placement, and reservoir management. 

Location and Geology
The study area (pseudo named Delta Field) lies in an Oil 
Mining Lease (OML) in the deep offshore Niger Delta 
(Figure 2). The Niger delta basin is situated in the Gulf of 
Guinea and extends throughout the Niger delta Province 
(Klett et al., 1997). According to Tuttle et al. (1999), the 
delta formed at the site of a rift triple junction related to 
the opening of the southern Atlantic starting in the Late 
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Jurassic and continuing into the Cretaceous. They further 
stated that one petroleum system called the Tertiary Niger 
Delta (Akata-Agbada) petroleum system has been 
identified in the basin, and that oil and gas resources are 
more than 35 billion barrels of recoverable oil and 90 
trillion cubic feet of recoverable gas. The geology of the 
Niger delta has been documented by several authors 
(Short and Stauble, 1965; Weber and Daukoru, 1975; 
Weber, 1987; Ekweozor and Daukoru, 1994; Reijers et 
al., 1997). Figure 2 illustrates the tectonic division of the 
delta into three distinct zones (i.e., upper extensional, 
transitional, and lower compressional), the conceptual 
depositional model of the Delta Field, and its location in 
the transitional zone (Central Plateau) which is very 
complex and characterized by faults, toe-thrusts, diapiric 
and shale ridges.

Figure 2: Location of study area (Delta Field), Deep Offshore, Niger Delta.    

Structurally, the field exists within a NE-SW trending 
dual-culmination anticline. The field is characterized by a 
complex reservoir system which consists of multi-layered 
reservoirs in Miocene turbidites complexes in several 
stratigraphic sequences (mainly sands, shales, and debris 
flows) within a burial range of 1100 m and 1700 m. The 
main reservoir intervals are the R12, R18, and R24 (i.e., 
regarded as Intervals 1, 2, and 3 in this study; Figure 3). A 
random seismic line in Figure 3 shows the main reservoir 
intervals based on the correlation between six (6) key 
wells in the field. The thickness of sands in the R18 
interval varies between 25 and 63 meters, while that of the 
R24 and R12 varies between 30 and 56 meters and 4 to 21 
meters respectively. In terms of petrophysical properties, 
the reservoir intervals in the field have porosities ranging 
from 17% to 25%.

Figure 3: Main reservoir intervals in the study area (Delta Field) based on the correlation between 5 wells using Ocean 
                 Bottom Nodes (OBN) seismic data. Note the heterogeneous seismic character which highlight variability or 
                 heterogeneity in seismic properties. Wells DF-1, 2, 3, 4, 5, and 8 on the isochron represent the wells used as 
                 learning / training data during the lithofacies characterization, with DF-6 serving as the blind well.
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DATA

Three main datasets were used in this study: namely logs, 
lithofacies, and seismic data. The conventional log data 
set consisted of environmentally corrected and edited 
versions of gamma ray, resistivity, full-wave sonic 
(compressional and shear), neutron-density, PEF 
(photoelectric factor), and quantitative volume of clay 
(Vcl) log data from 7 wells (DF-1, DF-2, DF-3, DF-4, 
DF-5, DF6, and DF-8; Figure 3). Multivariate statistics 
and regression-based electrofacies (EFs) derived from 
sets of well log responses that are unique to facies served 
as the lithofacies dataset for the 7 wells.  Wells DF-1, DF-
2, DF-3, DF-4, DF-5, and DF-6 were used as training 
wells, while well DF-8 was used as blind well.

On the other hand, the seismic data was mainly made up 
of inverted IP (acoustic impedance) and Vp/Vs (P-
velocity/S-velocity) elastic attributes from Ocean Bottom 
Nodes (OBN) 3D seismic data. Other data included 
horizons (isochrons) and faults that were interpreted from 
the seismic data. The isochron map in Figure 3 shows the 
areal coverage of the inverted seismic data. The Delta 
field is covered by both streamer and OBN 3D seismic 
data acquisition vintages acquired in 2016 and 2019 
respectively (Figure 4). These two seismic vintages 
represent efforts to resolve structural, stratigraphic, and 
reservoir monitoring challenges in the field (such as fault 
shadowing, resolution, repeatability, etc.). High seismic 
energy loss in the reservoir intervals due to overburden 
complexities (e.g., shallow gas effects, mud volcanoes, 
and shallow turbidite fairways) necessitated the 
acquisition of the OBN seismic survey. The seismic 
energy loss is quite problematic in the earlier seismic 
vintage (i.e., 3D streamer; Figure 4), leading to 3D 
seismic inversion results not being sufficiently optimal 
for seismic reservoir characterization. 

Currently, the OBN seismic data serves as the reference 
vintage in the study area for qualitative and quantitative 
seismic interpretation due to improved imaging and its 
intended use as a baseline for 4D seismic reservoir 
monitoring. Chakraborty (2017) regards the OBN 
seismic data acquisition technique as optimum for 
reservoir characterization due to its characteristic long 
offset, full azimuth data and high-quality low frequency 
content. Seismic inversion attributes (IP and Vp/Vs) from 
the OBN seismic data were chosen (in preference to those 
from the streamer vintage) as seismic input for the 
lithofacies characterization due to better energy 
penetration at the reservoir level (from long offset 
coverage and post stack AVO-consistent amplitude 
normalization), a robust velocity field, high-quality low 
frequency content and improved signal to noise ratio 
(SNR). The spectral comparison of the older streamer and 
OBN seismic data in Figure 5 highlights the improvement 

Figure 4: Inverse of energy loss index estimations (%) for 
                 Streamer (left) versus OBN (right) highlighting the 
                 seismic energy preservation in interval 2 (R12) of 
                 the Delta Field. Modified after Amoyedo et. al., 
                 (2020).

in frequency bandwidth and higher SNR in the OBN data. 
In addition, our choice of the inverted OBN seismic data 
was supported by better seismic characterization derived 
from it when compared to the streamer vintage elastic 
inversion. Amoyedo et. al., (2020) and Tawile et al., 
(2020) noted that the ratio of P-velocity to S-velocity 
(Vp/Vs) from the inverted OBN data which is a good 
indicator of sandy reservoirs in the study area, matched 
well results much better than the vintage streamer data ( 6). 
Their observations are further supported by quantitative 
estimates of correlation using the probability of success 
(POS) in volume of clay (Vcl) prediction at the two wells 
(DF-1 and DF-2) in Figure 6, which are based on 
comparisons between well log Vcl and OBN inversion 
predicted (i.e., pseudo) Vcl in relation to those from the 
older streamer inversion data. The POS from the OBN 
inversion seismic data range for the DF-1 and DF-2 wells 
were 74% and 83% relative to 44% and 70% from the 
narrow azimuth streamer inversion data. These POS 
values highlight the high quality of the OBN inversion 
(and well data) for lithofacies characterization.

METHODOLOGY

Lithofacies characterization in seismic space aimed at 
obtaining volumes of the probability of lithofacies in 3D 
geologic space, entails the determination of probability 
density functions (PDFs) or operators for each lithofacies 
at wells from 3D seismic data (e.g., inverted seismic 
attributes or elastic inversions) and subsequent 
application of these operators or PDFs in a convolutional 
manner to the 3D seismic data. The quality of the 
characterization is dependent on adequate data QCs (such 
as well log data checks and validations, robust seismic-to-
well calibrations, and inverted attribute QCs) and the 
existence of rock physics behaviors that can be directly to 
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Figure 5: Power spectral comparison between Streamer and 
                OBN seismic data. Note the improved frequency 
                bandwidth (at cut-offs of -6dB and -12dB) and 
                lower noise content in the OBN seismic frequency 
                spectrum. Modified from Amoyedo et. al., (2020).

Figure 6: Comparison of seismic reservoir characterization quality between streamer inverted Vp/Vs (top section) and OBN 
                inverted Vp/Vs (bottom section). Note the improved sand/shale characterization and much better correlation with 
                well results from the OBN-derived Vp/Vs. Modified after Amoyedo et. al., (2020) and Tawile et. al., (2020).

lithofacies. In this study, our focus was mainly directed 
towards the rock physics aspect. Moreover, aspects of the 
QCs of our datasets have already been detailed in the data 
section of this paper, and in literatures published by 
Amoyedo et al., (2020) and Tawile et. al., (2020).  

To perform the lithofacies classification in seismic space, 
our methodology involved incorporating an additional 
step (which we term reservoir or interval decoupling) into 
the traditional classification workflow (Figure 7). Based 
on the assumption that all input datasets (i.e., well data and 
extracted seismic attributes) are optimum (i.e., positive 
results from relevant QCs such as log data checks and 
validations, robust seismic-to-well calibrations, and 
inverted attribute QCs), the workflow for lithofacies 
classification traditionally involves: first, determining the 
seismic scale dependence or sensitivity of upscaled 
lithofacies (i.e., Grouped Electro-facies, GEFs in this 
study) in the study area to the inverted attributes (IP and 
Vp/Vs) of the OBN seismic data. The lithofacies 
upscaling is achieved by resampling merged GEFs to the 
same time sampling interval of the inverted attributes (i.e., 
3 milliseconds in our case). The sensitivity analysis is 
necessary to determine which lithofacies can be 
discriminated in seismic space based on the degree of 

overlap in inverted attributes cross-plots (e.g., IP versus 
Vp/Vs color coded by GEFs). This analysis is critical to 
determine if lithofacies characterization would be viable 
in the study area, and that the inverted IP and Vp/Vs 
attributes are suitable for the discrimination of lithofacies. 
Also, analysis of the lithofacies overlaps in the cross plots 
give insights into the need for merging of lithofacies or 
GEFs based on similarities in rock physics behavior. The 
second step is directed at merging of lithofacies or GEFs 
using clustering analysis in rock physics space at seismic 
scale. GEFs or lithofacies are merged when significant 
overlap exists in rock physics behavior between them. 
Continuous PDFs for each lithofacies are then built from 

discrete set of points in the IP versus Vp/Vs cross-plot 
after the second step. Finally, the operators or PDFs are 
applied in the full 3D volume based on a convolution 
process to obtain the probability (%) of each of the 
lithofacies in the input 3D seismic grid.

However, the complex nature of turbidites usually 
complicates the traditional characterization process or 
workflow due to significant overlaps in rock physics 
behavior of lithofacies. These overlaps result in biases and 
uncertainties in the predictiveness of facies probability 
cubes (Figure 1), leading to poor input data for reservoir 
modeling, well optimization (i.e., planning and 
placement), and reservoir management. Importantly, 
lithofacies characterization in gas/oil fields is dependent 
on the discriminative rock physics behavior(s) of 
lithofacies. In our view, this requirement is a standard in 
seismic reservoir characterization. This point is 
underscored by Dodd et. al., (2007) who opine that a 
sound rock physics basis is required for understanding 
factors controlling subsurface geophysical responses 
acquired from data such as seismic, wireline logs, and 
vertical seismic profiles (VSPs). 

Generally, lithofacies possesses distinct rock physics 
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Figure 7: Typical lithofacies classification workflow for translating 3D elastic inversion outputs to facies probability cubes.

behavior which can be used to discriminate or distinguish 
it from others (Figure 1). Based on significant overlaps 
between some lithofacies across different producing 
turbidite intervals in the Delta Field, we therefore 
designed an additional step of seismic scale dependency 
or sensitivity analysis to avoid biases and uncertainties in 
the predictiveness of facies probability cubes. However, 
this step was performed on the merged GEFs obtained 
from clustering analysis in rock physics space (i.e., before 
Step 2 of the classical characterization workflow). 
Primarily, this involved separating or decoupling 
reservoir and non-reservoir lithofacies found in multiple 
channel complexes that make up the gross logged interval 
in the Delta Field before the merging of the GEFs. Multi-
well rock physics analysis at seismic scale was applied to 
identify statistical facies populations that exhibit 
significant overlaps in rock physics properties across 
stratigraphic intervals. Based on the facies overlap 
sensitivities in rock physics space using inverted IP and 
Vp/Vs attributes from the field's Ocean Bottom Nodes 
(OBN) seismic data extracted at training wells, the entire 
gross stratigraphic sequence was then divided into three 
separate intervals (1, 2, and 3; Figure 3) consisting of 
facies with seismically important rock physics variations.

RESULTS  AND  DISCUSSIONS

Seismic scale sensitivities of upscaled lithofacies 
(Grouped Electro-facies, GEFs) to inverted attributes (IP 
and Vp/Vs) from OBN seismic data

Figure 8 shows the lithofacies (GEFs) obtained from 
eleven (11) electrofacies associations (EFAs) defined at 
wells using log facies and petrophysical grouping 
analysis. The eleven EFAs were grouped into 6 GEFs 
using similarities in both log character and three key 

petrophysical properties (i.e., Vcl, PHIT, and PHIE). The 
large number of EFAs and GEFs is indicative of the 
complex nature of turbidites in the study area which is 
linked principally to heterogeneities. Typically, 
heterogeneities cause transitional variations between 
turbidite GEFs in the petroelastic/rock physics domain 
which are expressed as overlaps in rock physics behavior 
that complicate lithofacies discrimination or sensitivities 
at seismic scale. 

The seismic scale sensitivities of upscaled GEFs using a 
cross plot of acoustic impedance (IP) versus P velocity/S 
velocity (Vp/Vs) from the OBN inversion seismic data 
within the gross logged interval of the Delta Field is 
shown in Figure 9. Upscaling to seismic scale was 
achieved by resampling the GEFs from 0.2m to 3ms 
which is the same sampling interval of the inverted 
attributes. Globally, the cross plot shows that GEFs can be 
discriminated in seismic space despite the presence of 
some overlaps between the facies data points. Lithofacies 
characterization is therefore viable in the study area, and 
the pair of inverted attributes (IP and Vp/Vs) are suitable 
for the discrimination of lithofacies. Also, some overlaps 
in the cross plot clearly indicate the need for merging of 
some lithofacies or GEFs in rock physics space at seismic 
scale (Figures 9, 10, and 11). For instance, overlaps 
between GEFs that constitute non-reservoir lithofacies 
(e.g., GEFs 1, 2, and 6) or between those that constitute 
reservoir lithofacies (e.g., GEFs 3, 4, and 5) indicate that 
merging into mega GEFs (MGEFs) would be required. 
However, some overlaps are also visible between 
reservoir and non-reservoir lithofacies (e.g., GEFs 4 and 5 
with GEF 6) which would lead to bias and uncertainties in 
the prediction quality of resultant facies probability cubes. 
The overlaps between reservoir and non-reservoir GEFs 
are further discussed in the reservoir facies decoupling 
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section. The seismo-facies in Figure 8 correspond to 
facies that are grouped based on expected similarity in 
seismic scale rock physics behaviour. This grouping is 
confirmed by the results in Figure 9.

In Figure 9-The global discrimination between GEFs or 
lithofacies is quite good indicating that lithofacies 
characterization is viable and that the inverted attributes 
(IP and Vp/Vs) are suitable for the discrimination of 
lithofacies. Overlaps between GEFs that constitute non-
reservoir lithofacies (e.g., GEFs 1, 2, and 6) or between 
those that constitute reservoir lithofacies (e.g., GEFs 3, 4, 
and 5) indicate that merging into mega GEFs (MGEFs) 
would be required. However, some overlaps are visible 
between reservoir and non-reservoir lithofacies (e.g., 
GEFs 4 and 5 with GEF 6) which would lead to bias and 
uncertainties in the predictiveness of resultant facies 
probability cubes. Figure 10 explains the overlaps 
between GEFs that constitute non-reservoir lithofacies 
(e.g., GEFs 1, 2, and 6) or between those that constitute 
reservoir lithofacies (e.g., GEFs 3, 4, and 5) indicate that 

Figure 8: Grouped Electrofacies (GEFs/Lithofacies) based on log character and petrophysical analysis of wells in the 
                 Delta Field. 

Figure 9: Seismic scale sensitivity of upscaled GEFs using 
                cross plot of acoustic impedance (IP) versus P 
                velocity/S velocity (Vp/Vs) from OBN inversion 
                seismic data within gross stratigraphic interval of 
               the Delta Field. 

Figure 10: Overlaps of GEFs based on the clustering of 
                   dominant GEF points on cross plot of acoustic
                   impedance (IP) versus P velocity/S velocity 
                   (Vp/Vs) from OBN inversion seismic data within 
                   gross stratigraphic interval of the Delta Field. 

merging into reservoir and non-reservoir mega GEFs 
(MGEFs) would be required. However, the clustering also 
reveals overlaps between reservoir (GEFs 3, 4, and 5) and 
non-reservoir lithofacies (e.g., GEFs 1, 2, and 6) which 

would lead to bias and uncertainties in reservoir/non-
reservoir discrimination of resultant facies probability 
cubes. 

Multi-well rock physics-based interval decoupling

Transformation of the data points of the GEFs into clusters 
or polygons highlights that overlaps exist between all 
GEFs in the gross logged section of the wells which 
encompasses all the turbidite intervals in the study area 
(Figures 9, 10, and 11). Apart from the global overlap 
between all GEFs, two sub-divisions of overlaps are 
prominent: overlaps between individual GEFs that 
constitute non-reservoir lithofacies (i.e., GEFs 1, 2, and 6) 
or between those that constitute reservoir lithofacies (e.g., 
GEFs 3, 4, and 5) which indicate that merging into non-
reservoir and reservoir mega GEFs (MGEFs) respectively 
would be required (Figures 10 and 11). The second 
category belongs to overlaps between reservoir lithofacies 
(GEFs 3, 4, and 5) and non-reservoir lithofacies (GEFs 1, 
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Interval Seismo-facies GEF VCL PHIT PHIE

Hemipelagites

Mud-turbidited LD

Silty turbidites LD

Sandy turbidites LD/Alternation

Sandy turbidites LD/No-differenciation

Sandy turbidites LD/Homolithic

Fine to medium sands HD

Medium to coarse sands HD

Muddy and sandy Debris-flow

Sandy debris-flow

GEF4

GEF 5

GEF 6

petrophysical parameters

SF 3

SF 2

SF 1
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GEF3
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0.570 0.307 0.073

0.092 0.338 0.300

0.559 0.263 0.034

0.550 0.258 0.069

0.040 0.264 0.250

0.368 0.186 0.060

0.548 0.183 0.038

0.039 0.219 0.209

0.390 0.137 0.033

R1110 & R1120

R1180E & W

R1246



2, and 6) which would lead to bias and uncertainties in the 
relative reservoir/non-reservoir predictiveness of 
resultant facies probability cubes. Existence of this 
second category warrants the need for some form of 
decoupling to enhance the discrimination of reservoir and 
non-reservoir lithofacies in seismic space. This 
decoupling was achieved by dedicating individual cross 
plots to intervals within the gross logged section of the 
wells which show the same discriminative rock physics 
behavior between lithofacies (Figure 11). Generally, it is 
normal that different intervals within the same turbidite 
field may show different rock physics behavior due to 
differences in geologic events (i.e., sedimentation, burial 
history, erosional episodes, and tectonics) that affected 
them. These geologic events are in turn responsible for 
the elastic properties that drive rock physics behavior.

The cross plots show that the gross logged interval in the 
Delta Field can be divided into three intervals based on 
similarities in rock physics behavior between lithofacies 
(Figure 11). Qualitatively, the individual cross plot for 
each interval (i.e., 1, 2, and 3) displays better 
discrimination between GEFs compared to that of the 
gross logged interval. Quite importantly, the cross plots 
for the decoupled intervals exhibit clustered responses 
with much lower overlaps than the clusters on cross plot 
of the gross logged interval. Quantitatively, statistical 
facies superposition analysis results (SFSA; Figure 12) 
for the decoupled (i.e., 1, 2, and 3) and gross logged 

Figure 11: Division of entire logged interval of the study area into three intervals based on similarities in rock physics 
                  behavior. 

interval highlight a global reduction in overlaps (%) 
between GEFs after decoupling. Also, significant 
reduction in the overlaps (%) between reservoir 
lithofacies (GEFs 3, 4, and 5) and non-reservoir 
lithofacies (GEFs 1, 2, and 6) is also observable in the 
three separate intervals relative to the gross interval 
(Figure 12). These reductions provide the rock physics 
support for lithofacies characterization in the study area 
since the different lithofacies (GEFs) can now be better 
discriminated. 

In Figure 11, the division enhances the discrimination of 
reservoir and non-reservoir lithofacies in seismic space by 
reducing the lithofacies overlaps exhibited in the gross 
logged interval. Primarily, this helped in decoupling 
reservoir lithofacies (GEFs 3, 4, and 5) from non-
reservoir lithofacies (e.g., GEFs 1, 2, and 6) thus reducing 
uncertainties in reservoir/non-reservoir discrimination.

Merging of GEFs using clustering analysis in rock 
physics space at seismic scale

Some overlaps between individual GEFs that constitute 
non-reservoir lithofacies (i.e., GEFs 1, 2, and 6), and 
reservoir lithofacies (e.g., GEFs 3, 4, and 5) were still 
visible after the rock physics based lithofacies decoupling 
(Figures 11 and 12). Such overlaps indicate that it would 
not be possible to discriminate these facies from each 
other. For example, discrimination between GEFs 3, 4, 
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and 5 would be difficult. However, GEF 6 showed 
minimal overlap with GEFs 1 and 2 amongst the non-
reservoir lithofacies, with GEFs 1 and 2 showing large 
overlap. In lithofacies characterization, lithofacies which 
overlap in rock physics cross plots (i.e., due to similarity 

Figure 12: Quantitative comparison of overlaps (%) in GEFs between decoupled intervals (1, 2, and 3) and gross logged 
                   interval using Statistical Facies Superposition Analysis (SFSA). Overlaps of GEFs in decoupled intervals are 
                   lower: Note the significantly lower overlaps between reservoir lithofacies (GEFs 3, 4, and 5) and non-reservoir 
                   lithofacies (e.g., GEFs 1, 2, and 6) thus reducing uncertainties in reservoir/non-reservoir discrimination.

in rock physics behavior) may sometimes be merged to 
guarantee the stability of lithofacies operators or PDFs. 
The results of lithofacies/GEFs merging for one of the 
decoupled intervals (Interval 2) into mega GEFs 
(MGEFs) is presented in Figure 13. Though not presented 
in this paper, similar merging exercises in intervals 1 and 
3 produced similar combinations of GEFs into MGEFs 1, 
2, and 3.

The merging resulted in three MGEFs (1, 2, and 3). 
Ellipses represent GEF clustering intensity. Though not 
presented in this paper, similar merging exercises in 
intervals 1 and 3 produced the same combination of GEFs 
into MGEFs 1, 2, and 3. Note that data points are more 
than those in Figure xx due to increase in number of 
inverted extracted at wells to eliminate statistical bias.
Probability Density Functions of merged 
GEFs/Lithofacies and Facies Probability Cubes

Comparisons of operators or probability density 
functions for each lithofacies built from discrete set of 
points of merged GEFs (i.e., MGEF 1, 2, and 3) from IP 
versus Vp/Vs cross-plots for both the entire logged 
interval and one of the decoupled intervals (Interval 2) 
demonstrate the advantage of the decoupling scheme 
(Figure 14). In seismic reservoir characterization, the 

Figure 13: Merging of GEFs into mega GEFs in Interval 2 
                   (R12; C – D; Figures 3 and 12) based on 
                   similarities in rock physics behavior. 

quality of a lithofacies characterization exercise can be 
determined from the degree of overlaps in PDFs. The 
PDFs for Interval 2 from the decoupled scheme showed 
reduced MGEF overlaps. For instance, the MGEF1 PDF 
from the entire logged interval exhibits some probabilities 

of occurrence (%) in the southern two quadrants (Figure 
14) which are not consistent with the rock physics 
behavior of shales in the study area (Figure 13).  Though 
not presented in this paper, reduced MGEF overlaps were 
also observed in the PDFs for intervals 1 and 3 using the 
decoupling scheme.
Further value of adding the decoupling scheme to the 
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Interval 1:  A-B Interval 2:  C - D Interval 3:  E - F

Gross Interval = 1+ 2 + 3

Generally, lithofacies overlap is lower in sub-divided intervals relative to the gross
interval.

Red polygons: Significantly lower overlap of reservoir lithofacies (GEFs 3, 4, and 5)
by non reservoir facies (GEFs 1, 2, and 6) in sub-divided intervals relative to the 
gross interval, Blank boxes represent 0% overlap between GEFs.



conventional lithofacies characterization workflow was 
observed in the probability cube of each of the merged 
lithofacies/GEFs in 3D seismic space that was deduced 
after application of the PDFs to the full OBN seismic 
volume based on a convolution process. One important 
QC approach to the checking of the quality of a lithofacies 
characterization exercise is the prediction quality of 
lithofacies probability cubes at training wells and cross 
validation at one or two wells that are not part of the 
characterization workflow (i.e., blind wells). A 
complementary approach is a similar check of prediction 
quality using areal (2D or map) attribute extractions of 
sedimentary systems or architectural elements (AEs). 
Figure 15 highlights the first approach for the merged 

Figure 14: Evidence of robustness of decoupling scheme based on the comparison of PDFs for merged GEFs for Interval 2 as 
                  deduced using the entire logged interval (i.e., top three cross plots) and decoupled interval 2 (i.e., bottom three 
                  cross plots), respectively. Colors represent the probabilities of each merged GEF (MGEF) or lithofacies in the 
                  cross-plot space. A similar robustness was observed in PDFs for intervals 1 and 3 using the decoupling scheme. 

GEF2 (i.e., MGEF2) in the study area, with the 
probability cube of MGEF2 of the decoupled interval 2 
showing robust facies prediction/calibration with the 
upscaled GEF log at the well that was chosen as the blind 
well in our workflow (DF-6; see Figure 3 for location of 
well). On the other hand, 2D average in layer attribute of 
probability of occurrence (%) of merged GEF2 (MGEF2) 
in one of the turbidite channels in interval 2 (R18) using 
decoupling scheme is presented in Figure 16.  Generally, 
the QCs point to very good calibration at the two wells 
(i.e., blind well DF-6 and training well DF-8) and 
excellent discrimination of MGEF2 (i.e., reservoir 
lithofacies) from the background or encasing non-
reservoir facies (MGEFs 1 and/or 3). Though not 
presented in this paper due to space constraints, a similar 
robustness was observed in the quality of lithofacies 
prediction of the MGEF probability cubes for intervals 1 

and 3 using the decoupling scheme. Though not presented 
in this paper, a similar robustness was observed in 
intervals 1 (R12) and 3 (R24) using the decoupling 
scheme. 

Note the robust facies prediction at the blind well (DF-6) 
and well DF-8 (one of the training wells used in the 
lithofacies characterization). Areal disposition of the 
channel is also well constrained by the probability cube. 
Colors represent the probabilities of occurrence for 
MGEF2. A similar robustness was observed in turbidite 
channels in intervals 1 (R12) and 3 (R24) using the 
decoupling scheme. 

Figure 15: Random line through blind well (DF-6) showing 
                   robust facies prediction exhibited by merged 
                   GEF2 (MGEF2) probability cube for interval 2 
                   (R18) using decoupling scheme. Colors represent 
                   the probabilities of occurrence for MGEF2. 
                   Location of the blind well is shown in Figures xx 
                   and xx. 
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CONCLUSIONS

We applied a reservoir (interval) decoupling scheme to 
Middle to Late Miocene turbidite sands and shales in the 
Delta Field in the Niger Delta to reduce classification 

Figure 16: 2D average in layer attribute of probability of 
                  occurrence (%) of merged GEF2 (MGEF2) in one 
                  of the turbidite channels in interval 2 (R18) using 
                  decoupling scheme. 

biases and uncertainties. The approach is qualitative, not 
computationally intensive, and does not require 
assumptions. It involved using multi-well rock physics 
analysis at seismic scale to identify statistical lithofacies 
populations within a lithofacies framework consisting of 
seven grouped electrofacies (GEFs), that exhibit 
significant overlaps in rock physics properties across the 
gross logged interval in the field. Based on facies overlap 
sensitivities in rock physics space using inverted IP and 
Vp/Vs attributes from Ocean Bottom Nodes (OBN) 
seismic data extracted at training wells, the vertical 
sequence was divided into three separate intervals 
consisting of lithofacies/GEFs with seismically 
important rock physics variations. Probability density 
functions (PDFs) and facies probability cubes from the 
decoupling approach showed better discrimination and 
correlations at wells when compared to those produced 
without the decoupling approach. Cross validation at 
blind wells indicated that the decoupled facies cubes are 
also more predictive based on excellent correspondence 
with well results. Reservoir modeling, well planning, and 

4D seismic monitoring using the facies probability cubes 
from the decoupling scheme are ongoing with 
preliminary results indicating improved predictions of 
sand presence, reservoir properties (e.g., net to gross, 
porosities, et cetera) at wells. These improved predictions 
are expected to reduce uncertainties in the use of the 
lithofacies probability cubes as probabilistic indicators of 
reservoir and non-reservoir facies within the 3D reservoir 
grid, thus adding value to the overall reservoir 
management in the oil field. In our view, our decoupling 
approach would be useful in other turbidite fields where 
significant overlaps in rock physics behavior among 
lithofacies in different stratigraphic intervals are 
observed.
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